Main, P., Woolfson, M. M. \& Germain, G. (1971). MULTAN. A Computer Program for the Automatic Solution of Crystal Structures. Univs. of York, England, and Louvain, Belgium.

Rajan, S. S. (1978). Acta Cryst. B34, 998-1000.
Shiono, R. (1968). Block-Diagonal Least-Squares Program for the IBM-1130. Department of Crystallography, Univ. of Pittsburgh.

Acta Cryst. (1978). B34, 3120-3122

## 3,3'-Dithienyl Ketone

By W. S. Sheldrick and W. Becker<br>Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig-Stöckheim, Federal Republic of Germany

and J. Engel
Chemiewerk Homburg, ZN DEGUSSA, Daimlerstrasse 25, D-6000 Frankfurt/Main, Federal Republic of Germany
(Received 8 May 1978; accepted 1 June 1978)

Abstract. $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{OS}_{2}$, monoclinic, $P 2_{1} / c, a=6 \cdot 168$ (5), $b=11 \cdot 168(14), c=13.374$ (35) $\AA$, $\beta=105.33(16)^{\circ}$, $M_{r}=194.3, D_{x}=1.48 \mathrm{~g} \mathrm{~cm}^{-3}$. The thiophene rings make angles of 20.9 and $20 \cdot 1^{\circ}$ with the trigonal coordination plane at $\mathrm{C}(6)$. The bridging $\mathrm{C}-\mathrm{C}$ distances of 1.463 (5) and 1.466 (6) $\AA$ indicate that there is relatively limited $\pi$ delocalization between the $C=0$ bond and the thiophene $\pi$ systems. One of the thiophene rings is disordered.

Introduction. Cell dimensions were obtained from a least-squares fit to the settings for 15 reflexions $\pm(h k l)$ on a Syntex $P 2{ }_{1}$ diffractometer ( $\mathrm{Cu} K \alpha, \lambda=1.54178$ $\AA$ ). Intensity measurements were carried out in the $\theta$ $2 \theta$ mode $\left(3.5 \leq 2 \theta \leq 135 \cdot 0^{\circ}\right)$ with graphite-monochromated $\mathrm{Cu} K \alpha$ radiation at scan speeds varying linearly between $2.93^{\circ} \mathrm{min}^{-1}$ ( 150 counts $\mathrm{s}^{-1}$ and below) and $29.30^{\circ} \mathrm{min}^{-1}$ ( 5000 counts $\mathrm{s}^{-1}$ and above). Scan and background times were equal. Lorentz and polarization corrections were applied but no absorption correction $\left[\mu(\mathrm{Cu} K \alpha)=4.8 \mathrm{~cm}^{-1}\right.$ ] was made.

After application of the acceptance criterion $I>$ $2 \cdot 0 \sigma(I), 1400$ unique reflexions were retained for use in the refinement. The structure was solved by direct methods (SHELX 76, G. M. Sheldrick) and refined by a blocked full-matrix least-squares method. After introduction of anisotropic temperature factors had led to values for $R_{G}\left[=\left(\sum w \Delta^{2} / \sum w F_{o}^{2}\right)^{1 / 2}\right]$ and $R$ of $0 \cdot 150$ and 0.104 respectively, inspection of the difference synthesis revealed electron density peaks of 0.79 e $\AA^{-3}$ at $0.47 \AA$ from $\mathrm{C}(10)$ and $0.39 \mathrm{e}^{-3}$ at $0.45 \AA$ from $C(7)$. These peaks could be best interpreted in terms of a disorder of ring $B$ as depicted in Fig. 1, i.e. the ring $B^{\prime}$ is related to $B$ by rotation of $\sim 180^{\circ}$ about the axis
$C(8)-C(6)$. The atoms of ring $B^{\prime}$ were accordingly introduced into the refinement under the following conditions:
(1) The site occupation factors (s.o.f.) of rings $B$ and $B^{\prime}$ were correlated so that s.o.f. $\left(B^{\prime}\right)=1-$ s.o.f. $(B)$.
(2) The equivalent distances in the rings $B$ and $B^{\prime}$ were restrained to refine together with allowed standard deviations in the bond lengths of $\pm 0.01 \AA$.
(3) The six H atoms of rings $A$ and $B$ were refined with a group isotropic temperature factor under the bond-length constraint that $d(\mathrm{C}-\mathrm{H})=1.08 \pm 0.01 \AA$.
(4) The atoms of rings $B$ and $B^{\prime}$ were at first assigned a joint isotropic temperature factor, then at the final stage of the refinement the former ring atoms were allowed to refine anisotropically. This constrained refinement led, however, to unreasonable values for $S(2)-C(10)$ and $S\left(2^{\prime}\right)-C\left(10^{\prime}\right)(1.78 \AA)$.

After inspection of the current values for the $S(1)$ $C(2)$ and $S(1)-C(5)$ distances in ring $A$, which should reasonably be similar to those in rings $B$ and $B^{\prime}, S(2)-$ $C(7)$ and $S(2)-C(10)$ and the equivalent bonds in ring $B^{\prime}$ were constrained to $1.70 \pm 0.015 \AA$. Although this led to a significant increase in $R_{G}(0.086$ to 0.094$)$ the


Fig. 1. The $B$ ring disorder in (I).
refinement may be regarded as more physically meaningful in view of the fact that there are no significant differences between bond lengths in the $A$ and $B$ rings and that these bond lengths are in a similar range to those observed in other thiophene derivatives (Rychnovsky \& Britton, 1968). The terminal value of $R_{w}\left(=\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|\right)$ was 0.086 and $R$ was 0.083 . The s.o.f. for the $B^{\prime}$ ring refined to 0.151 (5), the $B^{\prime}$ ring group isotropic temperature factor to 0.106 (5) $\AA^{2}$, and that for the H atoms to $0.096 \AA^{2}$ (e.s.d. for $A$ ring H atoms 0.009 , for $B$ ring $0.011 \AA^{2}$ ). The weights were given by $w=k /\left[\sigma^{2}\left(F_{o}\right)+g F_{o}^{2}\right]$, where $k$ and $g$ refined to 3.6985 and 0.000611 . Complex neutralatom scattering factors were employed (Cromer \& Waber, 1965; Cromer \& Liberman, 1970). Final positional parameters are in Table 1, bond lengths are listed in Table 2.* Fig. 2 is a perspective view of the

[^0]Table 1. Positional parameters ( $\times 10^{4}$ for the nonhydrogen atoms and $\times 10^{3}$ for hydrogen atoms)

|  | $x$ | $y$ | $z$ |
| :--- | ---: | :---: | ---: |
| $\mathrm{~S}(1)$ | $4414(2)$ | $4313(1)$ | $7038(1)$ |
| $\mathrm{C}(5)$ | $5548(8)$ | $5384(3)$ | $7916(3)$ |
| $\mathrm{C}(4)$ | $7824(7)$ | $5284(3)$ | $8277(2)$ |
| $\mathrm{C}(3)$ | $8653(8)$ | $4281(3)$ | $7822(3)$ |
| $\mathrm{C}(2)$ | $6927(8)$ | $3639(3)$ | $7118(3)$ |
| $\mathrm{O}(6)$ | $11362(5)$ | $6145(3)$ | $8967(2)$ |
| $\mathrm{C}(6)$ | $9360(8)$ | $6115(3)$ | $8962(3)$ |
| $\mathrm{C}(7)$ | $6715(8)$ | $6782(4)$ | $10013(3)$ |
| $\mathrm{C}(8)$ | $8580(6)$ | $6929(3)$ | $9654(2)$ |
| $\mathrm{C}(9)$ | $9796(9)$ | $7977(4)$ | $10098(3)$ |
| $\mathrm{C}(10)$ | $8846(10)$ | $8611(4)$ | $10802(3)$ |
| $\mathrm{S}(2)$ | $6409(3)$ | $7889(1)$ | $10824(1)$ |
| $\mathrm{C}\left(7^{\prime}\right)$ | $9984(43)$ | $7867(23)$ | $10037(27)$ |
| $\mathrm{C}\left(9^{\prime}\right)$ | $6329(34)$ | $6863(35)$ | $9755(29)$ |
| $\mathrm{C}\left(10^{\prime}\right)$ | $6556(58)$ | $7633(31)$ | $10623(29)$ |
| $\mathrm{S}\left(2^{\prime}\right)$ | $8642(20)$ | $8679(11)$ | $10768(9)$ |
| $\mathrm{H}(5)$ | $4344)$ | $600(3)$ | $807(4)$ |
| $\mathrm{H}(3)$ | $1034(4)$ | $394(4)$ | $809(3)$ |
| $\mathrm{H}(2)$ | $706(9)$ | $287(3)$ | $666(3)$ |
| $\mathrm{H}(7)$ | $526(6)$ | $620(4)$ | $983(4)$ |
| $\mathrm{H}(10)$ | $978(9)$ | $942(3)$ | $1103(4)$ |
| $\mathrm{H}(9)$ | $1122(7)$ | $834(5)$ | $988(5)$ |

## Table 2. Bond lengths ( $\AA$ )

| $\mathrm{C}(5)-\mathrm{S}(1)$ | $1.692(4)$ | $\mathrm{C}(2)-\mathrm{S}(1)$ | $1.701(5)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.363(7)$ | $\mathrm{C}(1)-\mathrm{C}(4)$ | $1.431(6)$ |
| $\mathrm{C}(6)-\mathrm{C}(4)$ | $1.463(5)$ | $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.416(6)$ |
| $\mathrm{C}(6)-\mathrm{O}(6)$ | $1.233(6)$ | $\mathrm{C}(8)-\mathrm{C}(6)$ | $1.466(6)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.368(7)$ | $\mathrm{C}(9)-\mathrm{C}(8)$ | $1.432(6)$ |
| $\mathrm{C}\left(7^{\prime}\right)-\mathrm{C}(8)$ | $1.370(26)$ | $\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}(8)$ | $1.432(26)$ |
| $\mathrm{S}(2)-\mathrm{C}(7)$ | $1.688(5)$ | $\mathrm{C}(10)-\mathrm{S}(2)$ | $1.712(6)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.422(8)$ | $\mathrm{S}\left(2^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)$ | $1.701(36)$ |
| $\mathrm{C}\left(10^{\prime}\right)-\mathrm{S}\left(2^{\prime}\right)$ | $1.710(37)$ | $\mathrm{C}\left(9^{\prime}\right)-\mathrm{C}\left(10^{\prime}\right)$ | $1.422(54)$ |

molecule with the numbering system used, and Fig. 3 shows the unit-cell contents perpendicular to [100].


Discussion. This X-ray analysis of $3,3^{\prime}$-dithienyl ketone (I) was undertaken in order to study the importance of the mesomeric contributions of the two dipolar structures of the type ( $\mathbf{I}^{\prime}$ ). The distortions of the thiophene bond lengths in three $O$-acetylthiophenecarboxylic acids (Griffe, Durant \& Pieret, 1972) in comparison to those in the parent compound (Bak, Christensen, Hansen-Nygaard \& Rastrup-Andersen, 1961) have been interpreted as indicating a significant contribution from such dipolar structures. Steric contact between the H atoms on $\mathrm{C}(5)$ and $\mathrm{C}(7)$ in (I) must lead either to a widening of the $\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{C}(8)$ angle or to a twisting of one or both of the thiophene rings relative to the trigonal coordination plane at $\mathrm{C}(6)$. The latter is, in


Fig. 2. The molecule in perspective with the numbering system used.


Fig. 3. Unit-cell contents perpendicular to [100].
fact, observed with rings $A$ and $B$ making respective angles of 20.9 and $20 \cdot 1^{\circ}$, whereas the $C(4)-C(6)-$ $C(8)$ angle of $121.5(4)^{\circ}$ is normal. The bond lengths and angles are similar in both thiophene systems lending the molecule an approximate $C_{2}$ symmetry. Both thiophene rings are planar [maximum deviation from their weighted least-squares planes $=0.02 \AA$ at $C(10)$ ]. The disordered $B^{\prime}$ ring represents a $175.6^{\circ}$ rotation of ring $B$ about $\mathrm{C}(8)-\mathrm{C}(6)$. The bond length distribution indicates that the contribution of the dipolar structures is limited. In octaethylxanthoporphinogen dihydrate (Sheldrick, 1976) bridging C-C distances of 1.440 (5) and 1.481 (5) $\AA$ were recorded, which indicated significant $\pi$-delocalization between the $\mathrm{C}=\mathrm{O}$ bond and the first pyrrole ring. It is not possible to explain the short $C(4)-C(5)$ and $C(8)-C(7)$
distances in (I) in terms of any possible mesomeric contribution.

## References

Bak, B., Christensen, D., Hansen-Nygaard, L. \& RAstrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 5863.

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Griffe, M., Durant, F. \& Pieret, A. F. (1972). Bull. Soc. Chim. Belg. 81, 319-332.
Rychnovsky, V. \& Britton, D. (1968). Acta Cryst. B24, 725-730.
Sheldrick, W. S. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 453-456.

# $5,6,7,8,15,16,17,18$-Octahydrodibenzo $[e, o][1,4,8,13]$ tetraazacyclohexadecene 

By George M. Sheldrick<br>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England<br>and Jill Trotter*<br>Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB, England

(Received 11 May 1978; accepted 5 June 1978)


#### Abstract

C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4}, M_{r}=320 \cdot 4\), orthorhombic, $F d d 2$, $a=40.778$ (26), $b=34.990$ (24), $c=4.928$ (1) $\AA$, $V=7031.4 \AA^{3}, Z=16, D_{x}=1.21 \mathrm{~g} \mathrm{~cm}^{-3}$. The arrangement of N atoms is approximately planar but the geometry of the ligand shows considerable distortion from that observed in the corresponding $\mathrm{Cu}^{11}$ complex [Losman, D., Engelhardt, L. M. \& Green, M. (1973). Inorg. Nucl. Chem. Lett. 9, 791-796].


Introduction. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4}$ (I) was recrystallized from dichloromethane/methanol. Intensities were measured on a Philips PW1100 diffractometer using graphitemonochromated Mo $K \alpha$ radiation and an $\omega-2 \theta$ scan. Unit-cell dimensions were obtained by least-squares analysis from the setting angles of 25 reflexions. Owing to poor crystal quality two octants of data were collected and equivalent reflexions were averaged. All independent reflexions $h k l$ (all indices positive) were measured in the range $3 \cdot 0 \leq \theta \leq 25 \cdot 0^{\circ}$. Reflexions $\bar{h} k l$ were measured for $3.0 \leq \theta \leq 28.0^{\circ}$ but weak reflexions giving $I_{t}-2 \sqrt{ } I_{t}<I_{b}$ on the first scan were omitted

[^1]from the data set: $I_{t}$ and $I_{b}$ are respectively the count rates at the top of the reflexion profile and in the background. To increase the accuracy of measured reflexions a multiple-scan technique was employed; each reflexion was scanned repeatedly until 500 counts had been recorded or until a maximum of three scans had been made. The data were corrected for Lorentz and polarization factors but not for absorption ( $\mu=0.40$ $\mathrm{cm}^{-1}$ ); 932 unique reflexions with $F \geq 3 \sigma(F)$ were used in the structure refinement. Space group $F d d 2$ is determined unambiguously by the systematic absences: $h k l$, $h+k, k+l, l+h \neq 2 n ; 0 k l, k+l \neq 4 n ; h 0 l, h+l \neq$ $4 n$.

(I) $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4}$

Conventional direct methods failed to give any encouraging molecular fragments so an attempt was


[^0]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33673 ( 10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]:    * Present address: Department of Physics, The City University, St. John Street, London ECIV 4PB, England.

